Lasertechnik spielt eine zentrale Rolle in der Fertigungstechnik, insbesondere im Bereich der Additiven Fertigung. Makino, ein global anerkannter Hersteller von Werkzeugmaschinen mit Hauptsitz in Japan, und das Fraunhofer-Institut für Lasertechnik ILT wagten einen spannenden, technologischen Vorstoß: Sie wollten das extreme Hochgeschwindigkeits-Laserauftragschweißen EHLA auf eine fünfachsige CNC-Plattform übertragen. Dafür musste allerdings eine Kinematik entwickelt werden, die eine schnelle und dynamische Bewegung des Bearbeitungskopfes für den EHLA-Prozess ermöglicht. Damit ließen sich vielfältige Geometrien flexibel umsetzen, Bauteile könnten mit einer ungeheuren Bandbreite an Materialen beschichtet werden.
Zunächst dachten die Projektpartner ausschließlich an Additive Fertigung, doch schon bald kam das Thema Reparaturen auf: »Reparaturen sind ausgesprochen spannend«, erläutert Min-Uh Ko, Gruppenleiter für Additive Fertigung und Reparatur LMD am Fraunhofer ILT. »Viele teure Komponenten müssen selbst bei leichten Defekten ausgetauscht werden. Da bietet eine flexible Anlage wie die von Makino mit einem Dreh- und Kipptisch tatsächlich gute Reparaturmöglichkeit, was Kosten für die Neuherstellung spart, Transporte und Lieferzeiten vermeidet, Standzeiten minimiert. Und: Das Thema Reparatur ist die Grundvoraussetzung für eine zukünftige Kreislaufwirtschaft.«
Makinos Aufgabe in dem Projekt beschränkte sich nicht nur auf die CNC-Hardware, sondern auch auf die Prozesssteuerung, denn die galt es komplett neu zu entwerfen. Die Herausforderung bestand darin, die Maschine technisch auf hohe Beschleunigungen hin anzupassen sowie die Prozesssteuerung und Maschinenkinematik dahingehend zu optimieren, die Interaktion zwischen Laserstrahl und Material exakt zu kontrollieren.
Die von der Makino-Niederlassung in Singapur entwickelte Werkzeugmaschine erreicht eine effektive Vorschubgeschwindigkeit von bis zu 30 Metern pro Minute, was eine erhebliche Steigerung gegenüber herkömmlichen Systemen darstellt. Diese Geschwindigkeit ist besonders vorteilhaft bei der Bearbeitung großer und komplexer Bauteile, da sie die Produktionszeit deutlich verkürzt. Die technischen Verbesserungen führen zu einer konstant hohen Qualität der Endprodukte und einer verbesserten Wirtschaftlichkeit des Fertigungsprozesses, was besonders für hochwertige Bauteile in der Luft- und Raumfahrt sowie im Werkzeugbau von Bedeutung ist.
Makinos Projektverantwortlicher Dr. Johannes Finger: »Makino ist weltweit bekannt für seine hochpräzisen CNC-Anlagen. Der Schritt in die Additive Fertigung, speziell das High-Speed LMD, stellt eine strategische Erweiterung des Makino-Portfolios dar. Die gemeinsam entwickelte fünfachsige CNC-Maschine ermöglicht es nun, komplexe Geometrien in schwer schweißbaren Materialien wie hochfeste Stähle oder Hartmetall schnell und präzise herzustellen. Das ist einzigartig.«
Gemeinsame Optimierung steigert Effizienz und Präzision
Das Fraunhofer ILT brachte seine umfangreiche Expertise im Bereich laserbasierter Fertigungsprozesse ein und brachte die umfangreiche Infrastruktur und spezialisierten Laboreinrichtungen in das Projekt ein. Mit jahrzehntelanger Erfahrung in der Prozess- und Komponentenentwicklung für LMD, hat das Institut entscheidend dazu beigetragen, die Prozessparameter für die Bearbeitung verschiedener Werkstoffe zu optimieren und die neue Technologie letztendlich zu dem industriellen Pilotkunden toolcraft AG zu transferieren. Dies beinhaltete die Anpassung der Laserparameter, die Feinabstimmung der Pulverzufuhr und die Optimierung der Bewegungssteuerung der CNC-Maschine.
»Die Optimierung des Wärmeeintrags ist ein kritischer Aspekt des EHLA3D-Verfahrens«, erläutert der ausgewiesene Materialexperte Min-Uh Ko. »Die Vorschubgeschwindigkeit und der Pulvergasstrahl spielen eine entscheidende Rolle bei der Kontrolle der Wärme, die in das Material eingebracht wird. Durch Anpassung der Vorschubgeschwindigkeit und den Pulvermassenströmen kann die Wärmezufuhr präzise gesteuert werden, was zur Reduktion der Wärmebeeinflussungszone führt und eine gleichmäßige Beschichtungsqualität sicherstellt.«
Die hohe Aufbaurate ist laut Johannes Finger ein maßgeblicher Fortschritt. »Durch den Einsatz hoher Vorschubgeschwindigkeiten und einer optimierten Pulverzufuhr wird bei gleichbleibender, oder sogar höherer Präzision eine erheblich verbesserte Effizienz des Materialauftrags erreicht. Die Aufbaurate bei HS-LMD kann so signifikant gesteigert werden, was zu einer Erhöhung der Gesamteffizienz des Fertigungsprozesses führt.«
Reparatur und Beschichtung von Hochleistungskomponenten
Die Reparatur und Instandhaltung von hochwertigen Werkzeug- und Maschinenteilen, die im regulären Betrieb hohen Belastungen ausgesetzt sind, war eines der Projektziele. Das konnten die Partner mit der angepassten EHLA3D-Technologie umsetzen. Darüber hinaus wurde die EHLA3D-Technologie erfolgreich zur Beschichtung von Verschleißteilen eingesetzt, was die Lebensdauer dieser Komponenten erheblich verbessert. Durch die Möglichkeit, verschleißfeste Schichten präzise und effizient aufzutragen, bietet EHLA3D eine kostengünstige Lösung für die Verlängerung der Nutzungsdauer von Bauteilen in verschiedenen Branchen, einschließlich Bergbau und Schwerindustrie.
Dass Makino die Ergebnisse derart schnell in der neuen Bearbeitungsmaschine AML 500 umsetzen konnte, zeigt einerseits, wie flexibel die CNC-Anlagen des Maschinenbauers sind. Die praktischen Anwendungen zeigen aber auch, dass die EHLA3D-Technologie nicht nur ein theoretisches Konzept ist, sondern eine fortgeschrittene, robuste und industriell einsetzbare Technik, die erhebliche Vorteile in Bezug auf Kosten, Effizienz und Leistung bietet. Die Zusammenarbeit zwischen dem Industriekunden und dem Fraunhofer ILT hat somit zu handfesten Verbesserungen in der Fertigungstechnologie geführt, die weit über die Laborumgebung hinausgehen.
Ein wesentlicher Aspekt zukünftiger Entwicklungen wird die Identifikation und Validierung neuer Anwendungsbereiche für das EHLA3D-Verfahren sein. Durch die neugewonnene Flexibilität der verarbeitbaren Materialsysteme kann das erweiterte EHLA-Verfahren nun auf Anwendungsbereiche transferiert werden, die aufgrund der Limitationen des LMD-Prozesses üblicherweise nicht untersucht werden konnten. Dies betrifft insbesondere Applikationen mit Multimaterialsystemen und der Druck von feinen Strukturen.
Kontakt: